

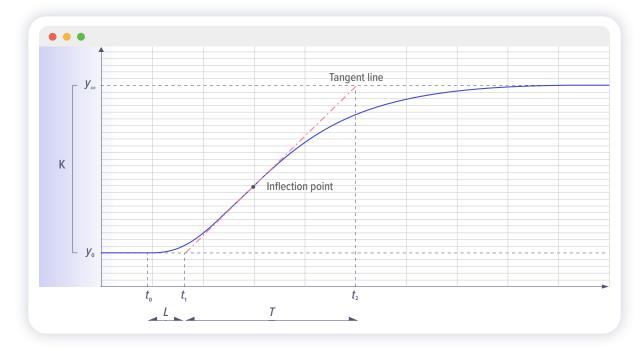
Ziegler-Nichols tuning rules can serve as a useful starting point for tuning, especially when plant dynamics are unknown. In this guide, you will learn how to implement the step response method and self-oscillation method using real-time, interactive Bode plots to design the control system's frequency response. By watching the time-domain response on the Oscilloscope embedded in the Moku PID Controller, you can gain a better understanding of how changes in **P**, **I**, and **D** parameters affect your system under test, leading to easier, more effective tuning.

PID gain profiles

P (Proportional): Reacts to present error. Too high? You'll see overshoot & oscillations. Too low? You'll get a slow response.

I (Integral): Reacts to past errors. Too high? You'll see overshoot & instability. Too low? You'll get a slow correction of steady-state error.

D (**Derivative**): Reacts to future trends.


Too high? Your system will face noise sensitivity. Too low? You'll get a sluggish response.

Ziegler-Nichols tuning

Unit step response method

- 1. Apply a unit step input to the open-loop system and observe the response using the Moku PID Controller.
- 2. Record the process reaction curve, or output response over time using the embedded Oscilloscope.
- 3. Identify the delay time, L, and the time constant, T, from the curve.

Tip: Find *L* by drawing a straight line tangent to the inflection point of your process reaction curve. *L* is the time between t_0 , the time at which your process reaction begins, and t_p the point at which the tangent line crosses the steady-state amplitude. Find *T* by determining the difference between t_p where the tangent line through the inflection point intercepts y_0 , and t_2 , where the tangent line intercepts the steady-state gain, y_{∞} . *K*, the system gain, is found by recording the steady state response and input response $\left(\frac{y_{\infty} - y_0}{u_{\infty} - u_0}\right)$, where $u_{\infty} - u_0$ is the amplitude of the step function.

4. Use the table below to set PID values.

Туре	K _P	T,	T _D
Р	T/KL	-	-
PI	0.9 * (T/KL)	3*L	_
PID	1.2 * (T/KL)	2*L	L/2
[1],[2]			

Self-oscillation method

Note: This method can force your plant into oscillation, which could be dangerous. Use this method with caution.

1. Disable I and D and increase P until sustained oscillations occur.

- 2. Record this value, the **Ultimate Gain (K** $_{u}$), or point of instability, and **Ultimate Period (T** $_{u}$), or oscillation period.
- 3. Use the table below to set PID values.

Туре	К _Р	T,	Τ _D
Р	0.50 * K _u	-	-
PI	0.45 * K _u	T _u /1.2	-
PID	0.60 * K _u	T _u /2	T _u /8
[1]			

Tuning adjustments

To further tune your controller, use this table to help guide your manual tuning adjustments. Increasing each gain profile will lead to a different effect on various system responses.

Parameter increase	Rise time	Overshoot	Settling time	Steady-state error
K _P	Decreases	Increases	Slight change	Decreases
K,	Decreases	Increases	Increases	Eliminates
K _D	Slight change	Decreases	Decreases	Slight change

[3]

References

[1] Y. Mo, "EE3011 Lecture 9," Yilin Mo's Website. [Online]. Available: https://yilinmo.github.io/EE3011/Lec9.html.

[2] "Ziegler-Nichols method for tuning PID controllers," Picuino. [Online]. Available: https://www.picuino.com/en/control-ziegler-nichols.html.

[3] F. A. Salim and N. Y. Park, "PID Controller," Cornell University ECE4760 Final Projects, 2012. [Online]. Available: https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2012/fas57_nyp7/Site/pidcontroller.html.

Ready to test? Explore configurations \rightarrow

Speak with an engineer ightarrow